Part Number Hot Search : 
2N722 2902000 2N722 HD44808 AB537 DTC113 R8DLXA E000997
Product Description
Full Text Search
 

To Download XCM524 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1/52 XCM524 series 600ma synchronous step-down dc/dc converter + 500ma ldo with delay function voltage detector  general description the XCM524 series is a multi combination module ic which comprises of a 600ma driver transistor built-in synchronous step?down dc/dc converter and a high speed, high current ldo regu lator with voltage detector function. the device is housed in small usp-12b01 package which is ideally suited for space conscious applications. the dc/dc converter and the ldo blocks are isolated in the package so that noise interfer ence from the dc/dc to the ldo regulator is minimal. the dc/dc converter block with a built-in 0.42 
p-channel mos driver transistor and 0.52 
n-channel mos switching transistor, designed to allow the use of ceramic capacitors. the dc/dc enables a high efficiency, stable power supply with an output current of 600ma to be configured using only a coil and two capacitors connected externally. the ldo regulator block is precise, low noise, high ripple reject ion, low dropout positive voltage regulators with built-in vol tage detector. the ldo is also compatible with low esr ceramic output capacitors. good output stability is maintained during load fluctuations due to its excellent transient response. the cu rrent limiter's fold back circuit also operates as a short cir cuit protection for the output current. the voltage detector block of the contains delay circuit. the delay time can be controlled by an external capacitor. the detector monitors the input voltage of the voltage regulator.  applications bd, dvd drives hdd drives cameras, video recorders mobile phones, smart phones various general-purpose power supplies  ? typical application circuit etr2428-003 (top view)  features input voltage range : 2.7v ~ 6.0v output voltage options : 0.8v ~ 4.0v (2 ? ) high efficiency : 92% (typ.) output current : 600ma (max.) oscillation frequency : 1.2mhz, 3.0mhz (+ 15%) current limiter circuit built-in : constant current & latching control methods : pwm pwm/pfm auto *performance depends on external components and wiring on pcb wiring. maximum output current : 500ma (limiter 600ma typ.) (2.5v ? v rout ? 4.9v) dropout voltage : 200mv@i rout =100ma (typ.) operating voltage range : 2.0v ~ 6.0v output voltage options : 0.9v ~ 5.1v (0.1v increments, 2 ? ) detect voltage options : 2.0v ~ 5.5v (0.1v increments, 2 ? ) vr.vd temperature stability :100ppm/ ? (typ.) high ripple rejection : 65db (@10khz) low esr capacitor : ceramic capacitor operating temperature range : -40 ? ~ +85 ? package : usp-12b01 environmentally friendly : eu rohs compliant, pb free
2/52 XCM524 series pin no XCM524 vdr dc/dc 1 v dout v dout - 2 v ss v ss - 3 cd cd - 4 v in2 - v in 5 pgnd - pgnd 6 lx - lx 7 dcout - vout 8 agnd - agnd 9 en2 - ce 10 v in1 v in1 - 11 nc - - 12 v rout v rout - pin no XCM524 functions 1 vdout vdr block: vd output voltage 2 v ss vdr block: ground 3 cd vdr block: delay capacitor connection 4 v in2 dc/dc block: power input 5 pgnd dc/dc block: power ground 6 lx dc/dc block: switching connection 7 dcout dc/dc block: output voltage 8 agnd dc/dc block: analog ground 9 en2 dc/dc block: on/off control 10 v in1 vdr block: power input 11 nc no connection 12 v rout vdr block: ldo output  pin configuratioin  pin assignment *dc/dc ground pin (no.5 and 8) shoul d be short before using the ic. * a dissipation pad on the reverse side of the package should be electrically isolated. ? *1: voltage level of the vdr?s dissipation pad should be v ss level. *2: voltage level of the dc/dc?s dissipation pad should be v ss level. care must be taken for an electrical potential of each diss ipation pad so as to enhance mounting strength and heat release when the pad needs to be connected to the circuit. (top view) (bottom view)
3/52 x cm524 series ? ordering information XCM524a ???? - (*1) ? dc/dc block: pwm fixed control XCM524b ???? - (*1) ? dc/dc block: pwm/pfm autom atic switching control ? designator ? dc/dc block vdr block oscillation frequency c l discharge soft start vd delay function vd sense pin vd output logic a 1.2m not available standard available v in active low detect b 3.0m not available standard available v in active low detect c 1.2m available high speed available v in active low detect d 3.0m available high speed available v in active low detect ? designator ? ? v dcout v rout v df 01 1.0 3.3 3.7 02 1.2 3.3 3.7 03 1.5 3.3 3.7 04 1.8 3.3 4.2 05 3.3 1.8 2.8 06 1.8 2.5 2.8 designator description symbol description oscillation frequency and options see the chart below ? output voltage see the chart below ?- packages taping type (*2) dr-g usp-12b01  product classification (*1) the XCM524 series is halogen and antimony free as well as being fully rohs compliant. (*2) the device orientation is fixed in its embossed tape pocket. *this series are semi-custom products. for other combinations of output voltages pleas e consult with your torex sales contact.
4/52 XCM524 series ? ??????????????????????????????????????????????????????? ta=25 ? *1 i rout = less than pd /  v in1 -v rout  *2 the power dissipation figure shown is pcb mounted. please refer to page 50 for details. please also note that the power di ssipation is for each channel. ? parameter symbol ratings units v in1 voltage v in1 7.0 v vrout current i rout 700 (*1) ma vrout voltage v rout v ss - 0.3 ? v in1 + 0.3 v vdout current i dout 50 ma vdout voltage v dout v ss -0.3 ? 7.0 v cd voltage v cd v ss - 0.3 ? v in1 + 0.3 v vin2 current v in2 -0.3 ? 6.5 v lx voltage v lx -0.3 ? v in2 + 0.3 ? 6.5 v dcout voltage v dcout -0.3 ? 6.5 v en2 voltage v en2 -0.3 ? 6.5 v lx current i lx ? 1500 ma usp-12b01 150 800 (only 1ch operation) power dissipation usp-12b01 (pcb mounted (*2) ) pd 600 (both 2ch operation) mw junction temperature tj 125 ? operating temperature range topr - 40 ? + 85 ? storage temperature range tstg - 55 ? + 125 ? r2 r1 error amp. vref with soft start, ce phase compensation pwm/pfm selector current feedback current limit pwm comparator logic synch buffer drive r3 r4 uvlo uvlo cmp ramp wave generator osc lx ce/mode control logic ce/ vshort ce r2 r1 error amp. vref with soft start, ce phase compensation pwm/pfm selector current feedback current limit pwm comparator logic synch buffer drive r3 r4 uvlo uvlo cmp ramp wave generator osc lx v ss v in v out ce/mode control logic vshort step-down dc/dc step-down dc/dc available with cl discharge, high speed soft-start v ss v in v out ce  block diagrams  a bsolute maximum ratings * a fixed pwm control scheme because that the ?ce control logi c? outputs a low level signal to the ?pwm/pfm selector?. * an auto pwm/pfm switching control scheme because the ?ce cont rol logic? outputs a high level signal to the ?pwm/pfm selector? . *diodes inside the circuit are an esd protection diode and a parasitic diode.
5/52 x cm524 series parameter symbol conditions min. typ. max. units circuit output voltage (*2, 3) v rout(e) i rout =30ma 0.98 v rout(t) 1.02 v ? maximum output current (0.9 ~ 2.4v) i routmax v in1 =v rout(t) +2.0v 400 - - ma ? maximum output current (2.5 ~ 4.9v) i routmax v in1 =v rout(t) +2.0v higher than v rout(t) = 4.0v, v in1 =6.0v 500 - - ma ? load regulation  v rout 1ma ? i rout ? 100ma - 15 50 mv ? vdif1 i rout =30ma e-1 mv ? dropout voltage (*4) vdif2 i rout =100ma e-2 mv ? supply current (fv / fx / fy / fz series) i dd v in1 =v rout(t) +1.0v v rout(t) ? 0.9v, v in1 =2.0v - 90 145 a ? line regulation  v rout / (v in1 k v rout ) v rout(t) +1.0v ? v in1 ? 6.0v v rout(t) ? 0.9v, 2.0v ? v in1 ? 6.0v i rout =30ma v rout(t) ? 1.75v, i rout =10ma - 0.01 0.20 % / v ? input voltage v in1 2.0 - 6.0 v - output voltage temperature characteristics  v rout / (  topr k v rout ) i rout =30ma -40 ?? topr ? 85 ? - ? 100 - ppm / ? ? ripple rejection rate psrr v in1 =[v rout(t) +1.0]v+0.5vp-pac when v rout(t) ? 1.25v, v in1 =2.25v+0.5vp-pac when v rout(t) ? 4.75v, v in1 =5.75v+0.5vp-pac i rout =50ma, f=10khz - 65 - db ? current limiter (2.4v or less) i rliml v in1 =v rout(t) +2.0v - 600 - ma ? current limiter (2.5v or more) i rlim v in1 =v rout(t) +2.0v higher than v rout(t) = 4.0v, v in1 =6.0v 500 600 - ma ? voltage regulator short-circuit current i rshort v in1 =v rout(t) +2.0v higher than v rout(t) = 4.0v, v in1 =6.0v - 50 - ma ? detect voltage (*7, 8) v df(e) 0.98 v df(t) 1.02 v ? hysteresis range (*8) v hys v df(t) 0.02 v df(t) 0.05 v df(t) 0.08 v ? v in1 = 2.0v 3.0 6.0 - v in1 = 3.0v 4.0 8.0 - v in1 = 4.0v 5.0 10.0 - v in1 = 5.0v 7.0 12.0 - supply current (*9) i dout v dout = 0.5v v in1 = 6.0v 10.0 15.0 - ma ? voltage detector detect voltage temperature stability  v df / (topr k v df ) -40 ?? topr ? 85 ? - 100 - ppm / ? ? delay resistance r delay v in1 =6.0v, cd=0v delay resistance =6.0v/delay current 300 500 700 k ? ?  electrical characteristics ta = 2 5 ? XCM524xx 1ch (vdr block) note: *1 : unless otherwise stated, (v in1 =v rout(t) +1.0v) *2 : v rout(t)  specified vr output voltage *3 : v rout(e)  effective vr output voltage. refer to the e-0 chart for values less than v df(t) ? 1.5v. (i.e. the vr output voltage when "v rout(t) +1.0v" is provided at the v in pin while maintaining a certain ir out value). *4 : vdif={v in 1 (*6) -v rout 1 (*5) } *5 : a voltage equal to 98% of the vr output voltage whenever a stabilized v rout1 =i rout {v rout(t) +1.0v} is input. *6 : v in 1  the input voltage when v out 1, which appears as input voltage is gradually decreased. *7 : v df(t)  specified detect voltage value *8 : v df(e)  effective detect voltage value. *9 : vd output current is sink current at detect. * the electrical characteristics above ar e when the other channel is in stop.
6/52 XCM524 series ? ? symbol e-0 e-1 e-1 output voltage detect voltage dropout voltage 1 (mv) (i out =30ma) dropout voltage 2 (mv) (i out =100ma) ??? parameter nominal detect voltage output voltage (v) ta = 2 5 ? ta = 2 5 ? v rout(e) / v df(e) vdif1 vdif1 vdif2 vdif2 v rout(t) v df(t) min. max. typ. max. typ. max. 0.90 0.870 0.930 1050 1100 1150 1200 1.00 0.970 1.030 1000 1100 1050 1200 1.10 1.070 1.130 900 1000 950 1100 1.20 1.170 1.230 800 900 850 1000 1.30 1.270 1.330 700 800 750 900 1.40 1.370 1.430 600 700 650 800 1.50 1.470 1.530 500 600 550 700 1.60 1.568 1.632 400 500 500 600 1.70 1.666 1.734 300 400 400 500 1.80 1.764 1.836 200 300 300 400 1.90 1.862 1.938 120 150 280 380 2.00 1.960 2.040 80 120 240 350 2.10 2.058 2.142 80 120 240 330 2.20 2.156 2.244 80 120 240 330 2.30 2.254 2.346 80 120 240 310 2.40 2.352 2.448 80 120 240 310 2.50 2.450 2.550 70 100 220 290 2.60 2.548 2.652 70 100 220 290 2.70 2.646 2.754 70 100 220 290 2.80 2.744 2.856 70 100 220 270 2.90 2.842 2.958 70 100 220 270 3.00 2.940 3.060 60 90 200 270 3.10 3.038 3.162 60 90 200 250 3.20 3.136 3.264 60 90 200 250 3.30 3.234 3.366 60 90 200 250 3.40 3.332 3.468 60 90 200 250 3.50 3.430 3.570 60 90 200 250 3.60 3.528 3.672 60 90 200 250 3.70 3.626 3.774 60 90 200 250 3.80 3.724 3.876 60 90 200 250 3.90 3.822 3.978 60 90 200 250 4.00 3.920 4.080 60 80 180 230 4.10 4.018 4.182 60 80 180 230 4.20 4.116 4.284 60 80 180 230 4.30 4.214 4.386 60 80 180 230 4.40 4.312 4.488 60 80 180 230 4.50 4.410 4.590 60 80 180 230 4.60 4.508 4.692 60 80 180 230 4.70 4.606 4.794 60 80 180 230 4.80 4.704 4.896 60 80 180 230 4.90 4.802 4.998 60 80 180 230 5.00 4.900 5.100 50 70 160 210 5.10 4.998 5.202 50 70 160 210 5.20 5.096 5.304 5.30 5.194 5.406 5.40 5.292 5.508 5.50 5.390 5.610 ? dropout voltage  electrical characteristics (continued)
7/52 x cm524 series  electrical characteristics (continued) XCM524xa 2ch (dc/dc block) v dcout =1.8v, f osc =1.2mhz, ta=25 test conditions: unless otherwise stated, v in2 =5.0v v dcout(t) = setting voltage note: *1: including hysteresis width of operating voltage. *2: effi = { ( output voltage  output current ) ?? ( input voltage  input current) }  100 *3: on resistance ( 
)= (v in2 - lx pin measurement voltage) ?? 100ma *4: design value *5: when temperature is high, a current of approximately 10  a (maximum) may leak. *6: time until it short-circuits dcout with gnd via 1 
of resistor from an operational state and is se t to lx=0v from current limit pulse generating. *7: v dcout(t) +1.2v<2.7v, v in2 =2.7v. *8: when the difference between the input and the output is small, some cycles may be skipped completely before current maximiz es. if current is further pulled from this state, output vo ltage will decrease because of p-ch driver on resistance. *9: current limit denotes the level of detection at peak of coil current. *10: "h" 1 v in2 ? v in2 - 1.2v, "l" 1 + 0.1v ? - 0.1v *11: XCM524a series exclude i pfm and dty limit_pfm because those are only for the pfm control?s functions. * the electrical characteristics above ar e when the other channel is in stop. parameter symbol conditions min. typ. max. units circuit output voltage v dcout when connected to external components, v in2 =v en2 =5.0v,i out2 =30ma 1.764 1.800 1.836 v ? operating voltage range v in2 2.7 - 6.0 v ? maximum output current i out2max when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =1.0v (*8) 600 - - ma ? uvlo voltage v uvlo v en2 =v in2 | v dcout =0v, voltage which lx pin holding ?l? level (*1, *10) 1.00 1.40 1.78 v ? (XCM524aa) - 22 50 supply current i dd v in2 =v en2 =5.0v,v dcout =v dcout (t) 1.1v (XCM524ba) - 15 33  a ? stand-by current i stb v in2 =5.0v,v en2 =0v,v dcout =v dcout(t) 1.1v - 0 1.0  a ? oscillation frequency f osc when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =1.0v, i out1 =100ma 1020 1200 1380 khz ? pfm switching current i pfm when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =v in2 , i out2 =1ma (*11) 120 160 200 ma ? pfm duty limit dty limit_pfm v en2 =v in2 =(c-1) i out2 =1ma (*11) 200 % ? maximum duty cycle d max v in2 =v en2 =5.0v,v dcout =v dcout(t) 0.9v 100 - - % ? minimum duty cycle d min v in2 =v en2 =5.0v,v dcout =v dcout(t) 1.1v - - 0 % ? efficiency (*2) effi when connected to external components, v en2 =v in2 1 v dcout(t) +1.2v (*7) , i out2 =100ma - 92 - % ? lx sw "h" on resistance 1 r lxh1 v in2 =v en2 =5.0v,v dcout =0v,il x =100ma (*3) - 0.35 0.55 ? ? lx sw "h" on resistance 2 r lxh2 v in2 =v en2 =3.6v,v dcout =0v,il x =100ma (*3) - 0.42 0.67 ? ? lx sw "l" on resistance 1 r lxl1 v in2 =v en2 =5.0v (*4) - 0.45 0.66 ?  lx sw "l" on resistance 2 r lxl2 v in2 =v en2 =3.6v (*4) - 0.52 0.77 ?  lx sw "h" leak current (*5) i leakh v in2 =v dcout =5.0v,v en2 =0v,l x =0v - 0.01 1.0  a ? lx sw "l" leak current (*5) i leakl v in2 =v dcout =5.0v,v en2 =0v,l x =5.0v - 0.01 1.0  a ? current limit (*9) i lim v in2 =v en2 =5.0v,v dcout =v dcout(t) 0.9v 900 1050 1350 ma ? output voltage temperature characteristics  v dcout / (v dcout k t opr) i out2 =30ma -40 ?? topr ? 85 ? - 100 - ppm/ ? ? en "h" voltage v enh v dcout =0v, applied voltage to v en2, voltage changes lx to ?h? level (*10) 0.65 - 6.0 v ? en "l" voltage v enl v dcout =0v, applied voltage to v en2 voltage changes lx to ?l? level (*10) v ss - 0.25 v ? en "h" current i enh v in2 =v en2 =5.0v,v dcout =0v - 0.1 - 0.1  a ? en "l" current i enl v in2 =5.0v,v en2 =0v,v dcout =0v - 0.1 - 0.1  a ? soft start time t ss when connected to external components, v en2 =0v v in2 ,i out1 =1ma 0.5 1.0 2.5 ms ? latch time t lat v in2 =v en2 =5.0v, v dcout =0.8v dcout(t) short lx at 1 ? resistance (*6) 1.0 - 20.0 ms ? short protection threshold voltage v short sweeping v dcout , v in2 =v en2 =5.0v, short lx at 1 ? resistance, dcout voltage which lx becomes ? lx=l ? within 1ms 0.675 0.900 1.125 v ?
8/52 XCM524 series  electrical characteristics (continued) XCM524xb 2ch (dc/dc block) v dcout =1.8v, f osc =3.0mhz, ta=25 test conditions: unless otherwise stated, v in2 =5.0v v dcout(t) = setting voltage note: *1: including hysteresis width of operating voltage. *2: effi = { ( output voltage  output current ) ?? ( input voltage  input current) }  100 *3: on resistance ( 
)= (v in2 - lx pin measurement voltage) ?? 100ma *4: design value *5: when temperature is high, a current of approximately 10  a (maximum) may leak. *6: time until it short-circuits dcout with gnd via 1 
of resistor from an operational state and is se t to lx=0v from current limit pulse generating. *7: v dcout(t) +1.2v<2.7v, v in2 =2.7v. *8: when the difference between the input and the output is small, some cycles may be skipped completely before current maximiz es. if current is further pulled from this state, output vo ltage will decrease because of p-ch driver on resistance. *9: current limit denotes the level of detection at peak of coil current. *10: "h" 1 v in2 ? v in2 - 1.2v, "l" 1 + 0.1v ? - 0.1v *11: XCM524a series exclude i pfm and dty limit_pfm because those are only for t he pfm control?s functions. * the electrical characteristics above ar e when the other channel is in stop. parameter symbol conditions min. typ. max. units circuit output voltage v dcout when connected to external components, v in2 =v en2 =5.0v,i out2 =30ma 1.764 1.800 1.836 v ? operating voltage range v in2 2.7 - 6.0 v ? maximum output current i out2max when connected to external components, v in2 = v dcout(t) +2.0v,v en1 =1.0v (*8) 600 - - ma ? uvlo voltage v uvlo v en2 =v in2 | v dcout =0v, voltage which lx pin holding ?l? level (*1, *10) 1.00 1.40 1.78 v ? (XCM524ab) - 46 65 supply current i dd v in2 =v en2 =5.0v, v dcout = v dcout(t) 1.1v (XCM524bb) - 21 35  a ? stand-by current i stb v in2 =5.0v,v en2 =0v,v dcout =v dcout(t) 1.1v - 0 1.0  a ? oscillation frequency f osc when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =1.0v, i out2 =100ma 2550 3000 3450 khz ? pfm switching current i pfm when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =v in2 , i out2 =1ma (*11) 170 220 270 ma ? pfm duty limit dty limit_pfm v en2 =v in2 =(c-1) i out2 =1ma (*11) 200 300 % ? maximum duty cycle d max v in2 =v en2 =5.0v,v dcout =v dcout(t) 0.9v 100 - - % ? minimum duty cycle d min v in2 =v en2 =5.0v,v dcout =v dcout(t) 1.1v - - 0 % ? efficiency (*2) effi when connected to external components, v en2 =v in2 1 v dcout(t) +1.2v (*7) , i out2 =100ma - 86 - % ? lx sw "h" on resistance 1 r lxh1 v in2 =v en2 =5.0v,v dcout =0v,il x =100ma (*3) - 0.35 0.55 ? ? lx sw "h" on resistance 2 r lxh2 v in2 =v en2 =3.6v,v dcout =0v,il x =100ma (*3) - 0.42 0.67 ? ? lx sw "l" on resistance 1 r lxl1 v in2 =v en1 =5.0v (*4) - 0.45 0.66 ?  lx sw "l" on resistance 2 r lxl2 v in2 =v en1 =3.6v (*4) - 0.52 0.77 ?  lx sw "h" leak current (*5) i leakh v in2 =v dcout =5.0v,v en2 =0v,l x =0v - 0.01 1.0  a ? lx sw "l" leak current (*5) i leakl v in2 =v dcout =5.0v,v en2 =0v,l x =5.0v - 0.01 1.0  a ? current limit (*9) i lim v in2 =v en2 =5.0v,v dcout =v dcout(t) 0.9v 900 1050 1350 ma ? output voltage temperature characteristics  v dcout / (v dcout ~ topr) i out2 =30ma -40 ?? topr ? 85 ? - 100 - ppm/ ? ? en "h" voltage v enh v dcout =0v, applied voltage to v en2 , voltage changes lx to ?h? level (*10) 0.65 - 6.0 v ? en "l" voltage v enl v dcout =0v, applied voltage to v en2 , voltage changes lx to ?l? level (*10) v ss - 0.25 v ? en "h" current i enh v in2 =v en2 =5.0v, v dcout =0v - 0.1 - 0.1  a ? en "l" current i enl v in2 =5.0v, v en2 =0v, v dcout =0v - 0.1 - 0.1  a ? soft start time t ss when connected to external components, v en2 =0v v in2 ,i out2 =1ma 0.5 0.9 2.5 ms ? latch time t lat v in2 =v en2 =5.0v,v dcout =0.8v dcout(t) short lx at 1 ? resistance (*6) 1.0 - 20.0 ms ? short protection threshold voltage v short sweeping v dcout , v in2 =v en2 =5.0v, short lx at 1 ? resistance, dcout voltage which lx becomes ? lx=l ? within 1ms 0.675 0.900 1.125 v ?
9/52 x cm524 series  electrical characteristics (continued) XCM524xc 2ch (dc/dc block) v dcout =1.8v, f osc =1.2mhz, ta=25 test conditions: unless otherwise stated, v in2 =5.0v v dcout(t) = setting voltage note: *1: including hysteresis width of operating voltage. *2: effi = { ( output voltage  output current ) ?? ( input voltage  input current) }  100 *3: on resistance ( 
)= (v in2 - lx pin measurement voltage) ?? 100ma *4: design value *5: when temperature is high, a current of approximately 10  a (maximum) may leak. *6: time until it short-circuits dcout with gnd via 1 
of resistor from an operational state and is se t to lx=0v from current limit pulse generating. *7: v dcout(t) +1.2v<2.7v, v in2 =2.7v. *8: when the difference between the input and the output is small, some cycles may be skipped completely before current maximiz es. if current is further pulled from this state, output vo ltage will decrease because of p-ch driver on resistance. *9: current limit denotes the level of detection at peak of coil current. *10: "h" 1 v in2 ? v in2 - 1.2v, "l" 1 + 0.1v ? - 0.1v *11: XCM524a series exclude i pfm and dty limit_pfm because those are only for the pfm control?s functions. * the electrical characteristics above ar e when the other channel is in stop. parameter symbol conditions min. typ. max. units circuit output voltage v dcout when connected to external components, v in2 =v en2 =5.0v,i out1 =30ma 1.764 1.800 1.836 v ? operating voltage range v in2 2.7 - 6.0 v ? maximum output current i out2max when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =1.0v (*8) 600 - - ma ? uvlo voltage v uvlo v en2 =v in2 | v dcout =0v, voltage which lx pin holding ?l? level (*1, *10) 1.00 1.40 1.78 v ? (XCM524ac) - 22 50 supply current i dd v in2 =v en2 =5.0v,v dcout =v dcout (t) 1.1v (XCM524bc) - 15 33  a ? stand-by current i stb v in2 =5.0v,v en2 =0v,v dcout =v dcout(t) 1.1v - 0 1.0  a ? oscillation frequency f osc when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =1.0v, i out2 =100ma 1020 1200 1380 khz ? pfm switching current i pfm when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =v in2 , i out2 =1ma (*11) 120 160 200 ma ? pfm duty limit dty limit_pfm v en2 =v in2 =(c-1)i out2 =1ma (*11) - 200 % ? maximum duty cycle d max v in2 =v en2 =5.0v, v dcout =v dcout(t) 0.9v 100 - - % ? minimum duty cycle d min v in2 =v en2 =5.0v, v dcout =v dcout(t) 1.1v - - 0 % ? efficiency effi when connected to external components, v en2 =v in2 1 v dcout(t) +1.2v (*7) , i out2 =100ma - 92 - % ? lx sw "h" on resistance 1 r lxh1 v in2 =v en2 =5.0v,v dcout =0v,il x =100ma (*3) - 0.35 0.55 ? ? lx sw "h" on resistance 2 r lxh2 v in2 =v en2 =3.6v,v dcout =0v,il x =100ma (*3) - 0.42 0.67 ? ? lx sw "l" on resistance 1 r lxl1 v in2 =v en2 =5.0v (*4) - 0.45 0.66 ?  lx sw "l" on resistance 2 r lxl2 v in2 =v en2 =3.6v (*4) - 0.52 0.77 ?  lx sw "h" leak current (*5) i leakh v in1 =v dcout =5.0v,v en1 =0v,l x =0v - 0.01 1.0  a ? current limit (*9) i lim v in2 =v en2 =5.0v,v dcout =v dcout(t) 0.9v 900 1050 1350 ma ? output voltage temperature characteristics  v dcout / (v dcout ~ topr) i out2 =30ma -40 ?? topr ? 85 ? - 100 - ppm/ ? ? en "h" voltage v enh v dcout =0v, applied voltage to v en2, voltage changes lx to ?h? level (*10) 0.65 - 6.0 v ? en "l" voltage v enl v dcout =0v, applied voltage to v en2, voltage changes lx to ?l? level (*10) v ss - 0.25 v ? en "h" current i enh v in2 =v en2 =5.0v,v dcout =0v - 0.1 - 0.1  a ? en "l" current i enl v in2 =5.0v,v en2 =0v,v dcout =0v - 0.1 - 0.1  a ? soft start time t ss when connected to external components, v en2 =0v v in2 , i out2 =1ma - 0.25 0.40 ms ? latch time t lat v in2 =v en2 =5.0v,v dcout =0.8v dcout(t) short lx at 1 ? resistance (*6) 1.0 - 20 ms ? short protection threshold voltage v short sweeping v dcout , v in2 =v en2 =5.0v, short lx at 1 ? resistance, dcout voltage which lx becomes ? lx=l ? within 1ms 0.675 0.900 1.150 v ? c l discharge r dchg v in2 =5.0v,l x =5.0v,v en2 =0v,v dcout =open 200 300 450 ? ?
10/52 XCM524 series  electrical characteristics (continued) XCM524xd 2ch (dc/dc block) v dcout =1.8v, f osc =3.0mhz, ta=25 test conditions: unless otherwise stated, v in2 =5.0v v dcout(t) = setting voltage note: *1: including hysteresis width of operating voltage. *2: effi = { ( output voltage  output current ) ?? ( input voltage  input current) }  100 *3: on resistance ( 
)= (v in2 - lx pin measurement voltage) ?? 100ma *4: design value *5: when temperature is high, a current of approximately 10  a (maximum) may leak. *6: time until it short-circuits dcout with gnd via 1 
of resistor from an operational state and is se t to lx=0v from current limit pulse generating. *7: v dcout(t) +1.2v<2.7v, v in2 =2.7v. *8: when the difference between the input and the output is small, some cycles may be skipped completely before current maximiz es. if current is further pulled from this state, output vo ltage will decrease because of p-ch driver on resistance. *9: current limit denotes the level of detection at peak of coil current. *10: "h" 1 v in2 ? v in2 - 1.2v, "l" 1 + 0.1v ? - 0.1v *11: XCM524a series exclude i pfm and dty limit_pfm because those are only for the pfm control?s functions. * the electrical characteristics above ar e when the other channel is in stop. parameter symbol conditions min. typ. max. units circuit output voltage v dcout when connected to external components, v in2 =v en2 =5.0v,i out2 =30ma 1.764 1.800 1.836 v ? operating voltage range v in2 2.7 - 6.0 v ? maximum output current i out2max when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =1.0v (*8) 600 - - ma ? uvlo voltage v uvlo v en2 =v in2 | v dcout =0v, voltage which lx pin holding ?l? level (*1, *10) 1.00 1.40 1.78 v ? (XCM524ad) - 46 65 supply current i dd v in2 =v en2 =5.0v,v dcout =v dcout (t) 1.1v (XCM524bd) - 21 35  a ? stand-by current i stb v in2 =5.0v,v en2 =0v,v dcout =v dcout(t) 1.1v - 0 1.0  a ? oscillation frequency f osc when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =1.0v, i out2 =100ma 2550 3000 3450 khz ? pfm switching current i pfm when connected to external components, v in2 =v dcout(t) +2.0v,v en2 =v in2 , i out2 =1ma (*11) 170 220 270 ma ? pfm duty limit dty limit_pfm v en2 =v in2 =(c-1)i out2 =1ma (*11) - 200 300 % ? maximum duty cycle d max v in2 =v en2 =5.0v, v dcout =v dcout(t) 0.9v 100 - - % ? minimum duty cycle d min v in2 =v en2 =5.0v, v dcout =v dcout(t) 1.1v - - 0 % ? efficiency effi when connected to external components, v en2 =v in2 1 v dcout(t) +1.2v (*7) , i out2 =100ma - 86 - % ? lx sw "h" on resistance 1 r lxh1 v in2 =v en2 =5.0v,v dcout =0v,il x =100ma (*3) - 0.35 0.55 ? ? lx sw "h" on resistance 2 r lxh2 v in2 =v en2 =3.6v,v dcout =0v,il x =100ma (*3) - 0.42 0.67 ? ? lx sw "l" on resistance 1 r lxl1 v in2 =v en2 =5.0v (*4) - 0.45 0.66 ?  lx sw "l" on resistance 2 r lxl2 v in2 =v en2 =3.6v (*4) - 0.52 0.77 ?  lx sw "h" leak current (*5) ileakh v in2 =v dcout =5.0v,v en2 =0v,l x =0v - 0.01 1.0  a ? current limit (*9) i lim v in2 =v en2 =5.0v,v dcout =v dcout(t) 0.9v 900 1050 1350 ma ? output voltage temperature characteristics  v dcout / (v dcout ~ topr) i out2 =30ma -40 ?? topr ? 85 ? - 100 - ppm/ ? ? en "h" voltage v enh v dcout =0v, applied voltage to v en2, voltage changes lx to ?h? level (*10) 0.65 - 6.0 v ? en "l" voltage v enl v dcout =0v, applied voltage to v en2, voltage changes lx to ?l? level (*10) v ss - 0.25 v ? en "h" current i enh v in2 =v en2 =5.0v,v dcout =0v - 0.1 - 0.1  a ? en "l" current i enl v in2 =5.0v,v en2 =0v,v dcout =0v - 0.1 - 0.1  a ? soft start time t ss when connected to external components, v en2 =0v v in2 , i out2 =1ma - 0.32 0.50 ms ? latch time t lat v in2 =v en2 =5.0v,v dcout =0.8v dcout(t) short lx at 1 ? resistance (*6) 1.0 - 20 ms ? short protection threshold voltage v short sweeping v dcout , v in2 =v en2 =5.0v, short lx at 1 ? resistance, dcout voltage which lx becomes ? lx=l ? within 1ms 0.675 0.900 1.150 v ? c l discharge r dchg v in2 =5.0v,l x =5.0v,v en2 =0v,v dcout =open 200 300 450 ? ?
11/52 x cm524 series  electrical characteristics (continued) ? pfm switching current (i pfm ) by oscillation frequency and output voltage 1.2mhz (ma) setting voltage min. typ. max. v dcout(t) Q 1.2 140 180 240 1.2v v dcout(t) Q 1.75 130 170 220 1.8v Q v dcout(t) 120 160 200 3.0mhz (ma) setting voltage min. typ. max. v dcout(t) Q 1.2 190 260 350 1.2v v dcout(t) Q 1.75 180 240 300 1.8v Q v dcout(t) 170 220 270 ? measuring maximum i pfm limit, v in2 voltage f osc 1.2mhz 3.0mhz (c-1) v dcout(t) +0.5v v dcout(t) +1.0v minimum operating voltage is 2.7v although when v dcout(t) =1.2v, f osc =1.2mhz, (c-1)=1.7v the (c-1) becomes 2.7v because of the minimum operating voltage 2.7v. ? soft-start time chart (XCM524 xc/ XCM524xd series only) ? product series f osc output voltage min. typ. max. 1.2mhz 0.8v ? v dcout(t) <1.5v - 250  s 400  s ? 1.2mhz 1.5v ? v dcout(t) <1.8v - 320  s 500  s ? 1.2mhz 1.8v ? v dcout(t) <2.5v - 250  s 400  s ? XCM524ac 1.2mhz 2.5v ? v dcout(t) ? 4.0v - 320  s 500  s ? 1.2mhz 0.8v ? v dcout(t) <2.5v - 250  s 400  s ? XCM524bc 1.2mhz 2.5v ? v dcout(t) ? 4.0v - 320  s 500  s ? 3.0mhz 0.8v ? v dcout(t) <1.8v - 250  s 400  s ? XCM524xd 3.0mhz 1.8v ? v dcout(t) ? 4.0v - 320  s 500  s ?  typical application circuit ? ? dc/dc block ? f osc =3.0mhz c in1 : 1  f (ceramic) c l1 : 1  f (ceramic) l : 1.5  h (nr3015 taiiyo yuden) c in2 : 4.7  f (ceramic) c l2 : 10  f (ceramic) ? ? dc/dc block ? f osc =1.2mhz c in1 : 1  f (ceramic) c l1 : 1  f (ceramic) l : 4.7  h (nr4018 taiiyo yuden) c in2 : 4.7  f (ceramic) c l2 : 10  f (ceramic) l v in c in2 7 8 9 10 3 4 5 6 nc lx vin1 en2 agnd dcout 11 12 2 1 vss cd pgnd vin2 c in1 cl2 cl1 vdcout en2 vdout vrout rpull-up cd vrout vdout
12/52 XCM524 series delay time rdelay standard : 300 ~ 700k 
typ : 500k 
cd delay time (typ.) delay time (min. max.) 0.01  f 3.5 ms 2.1 ~ 4.9 ms 0.022  f 7.7 ms 4.62 ~ 10.8 ms 0.047  f 16.5 ms 9.87 ~ 23.0 ms 0.1  f 35 ms 21.0 ~ 49.0 ms 0.22  f 77 ms 46.2 ~ 108.0 ms 0.47  f 165 ms 98.7 ~ 230.0 ms 1  f 350 ms 210.0 ~ 490.0 ms v rout 0.9 ~1.2v 1.3 ~ 1.7v 1.8 ~ 5.1v c l1 R 4.7 f R 2.2 f R 1.0 f ????  operational explanation ? voltage regulator block the voltage divided by resistors r1 & r2 is compared with t he internal reference voltage by the error amplifier. the p-channel mosfet which is connected to the v rout pin is then driven by the subseque nt output signal. the output voltage at the v rout pin is controlled & stabilized by a system of negative feedback. ? detector function with the xc524 series the series' detector function monitors the voltage divide d by resistors r3 & r4, which are connected to the vr out pin or the v in1 pin or the v sen pin, as well as monitoring the voltage of the inter nal reference voltage source via the comparator. the vdsen pin has options. a 'high' or 'low ' signal level can be output from the vd out pin when the vd pin voltage level goes below the detect voltage. the vd output logic has options. as vd out is an open-drain n-channel output, a pull-up resistor of about 220k 
is needed to achieve a voltage output. because of hysteresis at the detector func tion, output at the vd out pin will invert when the detect voltage level increases above the release voltage (105% of the detect voltage). by connecting the cd pin to a capacitor, the XCM524 series can apply a delay time to vd out voltage when releasing voltage. the delay time can be calculated from the internal resistance, rdelay (500k 
fixed) and the value of cd as per the following equation. with the XCM524 series, a stable output voltage is achievable even if used with low esr capacitors, as a phase compensation circuit is built-in. the output capacitor (c l1 ) should be connected as close to v rout pin and v ss pin to obtain stable phase compensation. also, please connect an input capacitor (c in1 ) of 1.0  f between the v in1 pin and the v ss pin. delay time = cd x rdelay x 0.7 ? (1) output capacitor chart the XCM524 series? fold-back circuit operates as an output current limiter and a short protection of the output pin. when the load current reaches the current limit level, the fixed current limiter circuit operates and out put voltage drops. when the output pin is shorted to the v ss level, current flows about 50ma. * the release delay time values above are calculated by using the formula (1). *1: the release delay time is infl uenced by the delay capacitance cd.
13/52 x cm524 series  operational explanation (continued) ? ? dc/dc block the dc/dc block of the XCM524 series consis ts of a reference voltage source, ramp wave circuit, error amplifier, pwm comparator, phase compensation circuit, outpu t voltage adjustment resistors, p-channel mosfet driver transistor, n-channel mosfet switch transistor for the synchronous switch, current lim iter circuit, uvlo circuit and others. (see the block diagram above.) ? the series ics compare, using the error amp lifier, the voltage of the internal voltage reference source with the feedback volta ge from the dcout pin through split resist ors, r1 and r2. phase compensation is performed on the resulting error amplifier output, to input a signal to the pwm com parator to determine the turn-on time dur ing pwm operation. the pwm comparator compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and delivers the resulting output to the buffer dr iver circuit to cause the lx pin to output a switching duty cycle. this process is continuously performed to ensu re stable output voltage. the current feedback circuit monitors the p-channel mos driver transistor current for each switching operation, and modulates the error amplifier output signal to prov ide multiple feedback signals. this enables a stable feedback loop even when a low esr capacitor such as a ceramic capacitor is used ensuring stable output voltage. the reference voltage source provides t he reference voltage to ensure stable ou tput voltage of t he dc/dc converter. the ramp wave circuit determines switching frequency. the frequenc y is fixed internally and can be selected from 1.2mhz or 3.0mhz. clock pulses generated in this circuit are used to produce ramp waveforms needed for pwm operation, and to synchronize all the internal circuits. the error amplifier is designed to monitor output voltage. t he amplifier compares the refer ence voltage with the feedback voltage divided by the internal split resistors, r1 and r2. w hen a voltage is lower than the re ference voltage is fed back, th e output voltage of the error amp lifier increases. the gain and frequency characte ristics of the error amplifier output are fixe d internally to deli ver an optimized signal to the mixer. the current limiter circuit of the XCM524series monitors the current flowing through the p-channel mos driver transistor connected to the lx pin, and features a combination of the current limit mode and the operation suspension mode. ?? when the driver current is greater than a s pecific level, the current lim it function operates to turn off the pulses from the l x pin at any given timing. ?? when the driver transistor is turned off, the limiter circuit is then released from the cu rrent limit det ection state. ?? at the next pulse, the driver transistor is turned on. however, the transistor is immediately tu rned off in the case of an ove r current state. ?? when the over current state is eliminated, the ic resumes its normal operation. the ic waits for the over current st ate to end by repeating the steps ?? through ? . if an over current state continues for a few ms and the above three steps are repeatedly performed, t he ic performs the function of latching the off state of the p-channel driver transistor, and goes into operation suspension mode. once the ic is in suspension m ode, operations can be resumed by either turning the ic off via the ce/mode pin, or by restoring power to the v in2 pin. the suspension mode does not mean a complete shutdown, but a state in which pulse output is suspended; theref ore, the internal circuitry remains in operation. the current limit of the XCM524 series can be set at 1050ma at typica l. besides, care must be taken when laying out the pc board, in order to prevent miss- operation of the current limit mode. depe nding on the state of the pc board, latch time may become longer and latch operation may not work. in order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the ic as possible. ? ? v in2 v en2 lx v dcout i lx current limit level limitms limit ? #ms limit ? #ms
14/52 XCM524 series  operational explanation (continued) ? ? the short-circuit protection circuit monitors the internal r1 and r2 divider voltage from the dcout pin. in case where output is accidentally shorted to the ground and when the fb point voltage decreases less than half of the reference voltage (vref) and a current more than the i lim flows to the driver transistor, the s hort-circuit protection quickly operates to turn off and to latch the p-channel mos driver transistor. in latch state, the operation can be resumed by either turning the ic off and on via the en2 pin, or by restoring power supply to the v in2 pin. when sharp load transient happens, a vo ltage drop at the dcout pin is pr opagated to fb point through c fb , as a result, short circuit protection may operate in the voltage higher than 1/2 v out voltage. ? when the v in2 pin voltage becomes 1.4v or lower, the p-channel output driver transistor is forced off to prevent false pulse output caused by unstable operation of the internal circuitry. when the v in2 pin voltage becomes 1.8v or higher, switching operation takes place. by releasing the uvlo function, the ic performs the soft start function to initiate output startup operation. the soft start func tion operates even when the v in pin voltage falls momentarily belo w the uvlo operating voltage. the uvlo circuit does not cause a complete shutdown of the ic, but causes puls e output to be suspended; therefore, the internal circuitry remains in operation. in the pfm control operation, until coil cu rrent reaches to a specified level (i pfm ) , the ic keeps the p-ch mosfet on. in this case, on-time (t on ) that the p-ch mosfet is kept on can be given by the following formula. t on = li pfm /(v in2 -v dcout )  i pfm ? in the pfm control operati on, the pfm duty limit (dty limit_pfm ) is set to 200% (typ.). therefor e, under the condition that the duty increases (e.g. the condition that the step-down ratio is small), it?s possible for p-ch mosfet to be turned off even when coil current doesn?t reach to i pfm . ? i pfm ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? pfm duty limit i pfm ? i pfm ?
15/52 x cm524 series  operational explanation (continued) XCM524 series can quickly discharge the el ectric charge at the output capacitor (c l2 ) when a low signal to the ce pin which enables a whole ic circuit put into off state, is inpu tted via the n-channel mos sw itch located between the l x pin and the v ss pin. when the ic is disabled, electr ic charge at the output capacitor (c l ) is quickly discharged so that it may avoid application malfunction. discharge time of the output capacitor (c l ) is set by the c l auto-discharge resistance (r) and the output capacitor (c l ). by setting time constant of a c l auto-discharge resistance value [r ] and an output capacitor value (c l2 ) as  (  =c x r), discharge time of the output volt age after discharge via the n channel transistor is calculated by the following formula. v = v dcout(t) e -t /  or t =  ln ( v dcout(t) /v) v : output voltage after discharge, v dcout(t) : output voltage after discharge t: discharge time  : cr c = capacitance of output capacitor  c l2  r = c l auto-discharge resistance o u t p u t v o l t a g e r e l a t i v e v a l u e 1 0 0 = s e t t i n g v o l t a g e v a l u e 0 10 20 30 40 50 60 70 80 90 100 0 102030405060708090100 cl=10uf cl=20uf cl=50uf  note on use when the dc/dc converter and t he vr are connected as v dcout =v in1 , the following points should be noted. 1. when larger value is used in dc/dc output capacitor c l2 , the larger value is also used in c l1 as in proportional. please be noted that when c l2 capacitance of the vr is getting large, an inrush current increases at vr start-up, dc/dc short circuit protection starts to operate, as a result, the ic may happen to stop. 50us/div en2(5v/div) dcout(1v/div) vrout(1v/div) iin2(500ma/div) ?jo * vr inrush current i in1 makes dc/dc short-circuit protection to start, as a result, the ic may happen to stop. the left waver forms are taken at c l1 =10  , c l2 =10  f(in contrast to the recommended 1.0  f). short-circuit protection to start
16/52 XCM524 series ?  note on use (continued) 1. please use this ic within the stated absolute maximum ra tings. the ic is liable to malfunction should the ratings be exceeded. 2. where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. especially, v in1 and v ss wiring should be taken into consideration for reinforcement. 3. please wire the input capacitor (c in1 ) and the output capacitor (c l1 ) as close to the ic as possible. care shall be taken for capacitor selection to ensure stabili ty of phase compensation from the point of esr influence. 1. the XCM524 series is designed for use with ceramic output capacitors. if, however, the potential difference is too large between the input voltage and the output vo ltage, a ceramic capacitor may fail to absorb the resulting high switching energy and oscillation could occur on the output. if the input-out put potential difference is large, connect an electrolytic capacitor in parallel to compensate for insufficient capacitance. 2. spike noise and ripple voltage arise in a switching regulato r as with a dc/dc converter. these are greatly influenced by external component selection, such as the coil inductance, capacitance values, and board layout of external components. once the design has been completed, verification with actual components should be done. 3. as a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a rippl e may increase. 4. when input-output voltage differential is large and light load conditions, a small duty cycle comes out. after that, 0%duty cycle may continue in several periods. 5. when input-output voltage different ial is small and heavy load conditions, a large duty cycle comes out and may continues100% duty cycle in several periods. 6. with the ic, the peak current of the co il is controlled by the current limit circ uit. since the peak current increases when dropout voltage or load current is high, cu rrent limit starts operation, and this can lead to instability. when peak current becomes high, please adjust the coil inductance value and full y check the circuit operation. in addition, please calculate the peak current according to the following formula: ipk =(v in2 -v dcout )onduty/(2lf osc ) + i out2 l  coil inductance value f osc  oscillation frequency 7. when the peak current which exceeds limit current flows wi thin the specified time, the built-in p-channel mos driver transistor turns off. during the time until it detects limit current and before the p- channel built-in tran sistor can be turne d off, the current for limit current flows; t herefore, care must be taken when selecting the rating fo r the external components such as a coil. 8. depending on the state of the pc board, latch time may become longer and latch operation may not work. in order to avoid the effect of noise, the board should be laid out so that input capacitors are placed as close to the ic as possible. 9. use of the ic at voltages below the reco mmended voltage range may lead to instability. 10. this ic should be used within the stated absolute maxi mum ratings in order to prevent damage to the device. 11. when the ic is used in high temperature, output voltage may increase up to inpu t voltage level at no load because of the leak current of the p-chan nel mos driver transistor.
17/52 x cm524 series  note on use (continued) 12. the current limit is set to 1350ma (max.) at typical. however, the current of 1350ma or more may flow. in case that the current limit functions while the dcout pi n is shorted to the gnd pin, when p-channel mosfet is on, the potential difference for input voltage will occur at both ends of a coil. for this, the time rate of coil current becomes large. by contrast, when n- channel mosfet switch is on, t here is almost no potential diff erence at both ends of the coil since the dcout pin is shorted to the gnd pin. consequently, the time rate of coil current becomes quite small. according to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain current value, exceeding the amount of current, which is suppos ed to be limited originally. even in this case, however, after the over current state continues for several ms, the circuit will be latched. a coil should be used within the stated absolute maximum rating in order to prevent damage to the device. ? current flows into p-channel mos driver transistor to reach the current limit (i lim ). ? the current of i lim or more flows since the delay time of the circuit o ccurs during from the detecti on of the current limit to off of p-channel mos driver transistor. ? because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small. ? lx oscillates very narrow pulses by the current limit for several ms. ? the circuit is latched, stopping its operation. ? 13. in order to stabilize v in1 ?s voltage level and oscillation frequency, we recommend that a by-pass capacitor (c in2 ) be connected as close as possible to the v in2 & v ss pins. 14. high step-down ratio and very light lo ad may lead an intermittent oscillation. 15. during pwm / pfm automatic switching mode, operating ma y become unstable at transiti on to continuous mode. please verify with actual parts. ? ? ? # ms
18/52 XCM524 series  note on use (continued) 16. ? please note the l value of the coil. the ic may enter unstabl e operation if the combination of ambient temperature, setting voltage, oscillation frequency, and l value are not adequate. ? ? 17. under input-output voltage differential is large, operating may become unstable at transition to continuous mode. please verify with actual parts. ? instructions of pattern layouts ? 1. ? please use this ic within the stated absolute maximum rati ngs. the ic is liable to malfunction should the ratings be exceeded. 2. ? in order to stabilize v in1 ~ v in2 ~ dcout k v rout voltage level, we recommend that a by-pass capacitor (c in1 ~ c in2 ~ c l1 ~ c l2 ) be connected as close as possible to the v in1 ~ v in2 ~ dcout k v rout and gnd k v ss pins. 3. please mount each external component as close to the ic as possible. 4. ? wire external components as close to the ic as possible an d use thick, short connecting traces to reduce the circuit impedance. 5. v ss  agnd ~ pgnd ~ v ss  ground wiring is recommended to get large area. the ic may goes into unstable operation as a result of v ss voltage level fluctuation during the switching. 6. ? this series? internal driver transistors br ing on heat because of the output current (i out ) and on resistance of driver transistors. ? recommended pattern layout ? the range of l value ? f osc v dcout l value 3.0mhz 0.8v ? v dcout ? 4.0v 1.0  h ? 2.2  h ? v dcout ? 2.5v 3.3  h ? 6.8  h ? 1.2mhz 2.5v ? v dcout 4.7  h ? 6.8  h ? *when a coil less value of 4.7 h is used at when a coil less value of 1.5 h is used at f osc =3.0mhz, peak coil current more easily reach the current limit ilmi. in this case, it may happen that the ic can not provide 600ma output current. ? front back
19/52 x cm524 series v rout 0.9 ~1.2v 1.3 ~ 1.7v 1.8v ~ 5.1v c l ? 4.7  f ? 2.2  f ? 1.0  f  test circuits outpur capacitor
20/52 XCM524 series  test circuits (continued)
21/52 x cm524 series 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 100 200 300 400 500 600 700 output current irout(ma) output voltage vrout ? v e 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 100 200 300 400 500 600 700 output current irout(ma ) output voltage vrout ? v e 0.0 0.5 1.0 1.5 2.0 2.5 0 100 200 300 400 500 600 700 output current irout(ma) output voltage vrout ? v e 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 100 200 300 400 500 600 700 output current irout(ma) output voltage vrout ? v e 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 100 200 300 400 500 600 700 output current irout(ma) output voltage vrout ? v e 0.0 0.5 1.0 1.5 2.0 2.5 0 100 200 300 400 500 600 700 output current irout(ma) output voltage vrout ? v e vin=3.8v, cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) topr= 25 ? topr = - 40 ? topr= 85 ? cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) vin= 3.8v vin= 2.1v vin= 6.0v topr= 25 ? topr= - 40 ? topr= 85 ? vin=5.0v, cin=1.0  f (ceramic), cl=1.0  f (c eramic ) cin=1.0  f (ceramic), cl=1.0  f (c eramic ) vin= 4.5v vin= 2.8v vin= 6.0v topr= 25 ? topr = - 40 ? topr= 85 ? cin=1.0  f (ceramic), cl=1.0  f (c eramic ) vin= 5.0v vin= 6.0v vin=4.5v, cin=1.0  f (ceramic), cl=1.0  f (c eramic ) xc6405 series (vr:1.8v) xc6405 series (vr:1.8v) xc6405 series (vr:2.5v) xc6405 series (vr:2.5v) xc6405 series (vr:3.0v) xc6405 series (vr:3.0v) ? 1ch:vdr block  1  vr output voltage vs. vr output current  typical performance characteristics output current: i rout (ma) output voltage: v rout (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =1.8v output current: i rout (ma) output voltage: v rout (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =1.8v output current: i rout (ma) output voltage: v rout (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =2.5v output current: i rout (ma) output voltage: v rout (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =2.5v output current: i rout (ma) output voltage: v rout (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =3.0v output current: i rout (ma) output voltage: v rout (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =3.0v v in1 = 5.0v v in1 = 3.8v v in1 = 4.5v
22/52 XCM524 series 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0 100 200 300 400 500 600 700 output current irout(ma) output voltage vrout ? v e 0.0 0.3 0.6 0.9 1.2 1.5 0 100 200 300 400 500 600 700 output current irout(ma) output voltage vrout ? v e 0.0 0.3 0.6 0.9 1.2 1.5 0 100 200 300 400 500 600 700 output current irout(ma ) output voltage vrout ? v e 0.0 1.0 2.0 3.0 4.0 5.0 6.0 0 100 200 300 400 500 600 700 output current irout (ma) output voltage vrout ? v e vin=6.0v, cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) topr= 25 ? topr= - 40 ? topr= 85 ? cin=1.0  f (ceramic), cl=1.0  f (c eramic ) vin= 6.0v vin=2.9v, cin=1.0  f (ceramic), cl=4.7  f (c eramic ) topr = 25 ? topr = - 40 ? topr = 85 ? cin=1.0  f (ceramic), cl=4.7  f (c eramic ) vin= 2.0v vin= 2.9v vin= 6.0v xc6405 series (vr:5.0v) xc6405 series (vr:5.0v) xc6405 series (vr:0.9v) xc6405 series (vr:0.9v)  1  vr output voltage vs. vr output current (continued)  typical performance characteristics (continued) output current: i rout (ma) output voltage: v rout (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =5.0v output current: i rout (ma) output voltage: v rout (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =5.0v output current: i rout (ma) output voltage: v rout (v) c in1 =1.0  f(ceramic), c l1 =4.7  f(ceramic) v rout =0.9v output current: i rout (ma) output voltage: v rout (v) c in1 =1.0  f(ceramic), c l1 =4.7  f(ceramic) v rout =0.9v v in1 = 6.0v v in1 = 2.9v
23/52 x cm524 series 0.5 0.7 0.9 1.1 1.3 1.5 0.5 1.0 1.5 2.0 2.5 input voltage vin (v) output voltage vrout ?? v e 0.60 0.80 1.00 2.03.04.05.06.0 input voltage vin (v) output voltage vrout ? v e 2.40 2.45 2.50 2.55 2.60 3.0 3.5 4.0 4.5 5.0 5.5 6.0 input voltage vin (v) output voltage vrout ? v e 1.7 1.9 2.1 2.3 2.5 2.7 2.0 2.5 3.0 input voltage vin (v) output voltage vrout ?? v e 1.65 1.70 1.75 1.80 1.85 1.90 3.0 3.5 4.0 4.5 5.0 5.5 6.0 input voltage vin (v) output voltage vrout ? v e 1.0 1.2 1.4 1.6 1.8 2.0 1.3 1.8 2.3 input voltage vin (v) output voltage vrout ? v e topr=25 ? cin=1.0  f (ceramic), cl=4.7  f (ceramic) iout=0ma 1ma 30ma 100ma topr=25 ? cin=1.0  f (ceramic), cl=4.7  f (c eramic ) iout=0ma 1ma 30ma 100ma topr=25 ? cin=1.0  f (c eramic ), cl=1.0  f (c eramic ) topr=25 ? cin=1.0  f (c eramic ), cl=1.0  f (c eramic ) iout=0ma 1ma 30ma 100ma iout=0ma 1ma 30ma 100ma iout=0ma 1ma 30ma 100ma iout=0ma 1ma 30ma 100ma topr=25 ? cin=1.0  f (ceramic), cl=1.0  f (ceramic) topr=25 ? cin=1.0  f (ceramic), cl=1.0  f (ceramic) xc6405 series (vr:0.9v) xc6405 series (vr:0.9v) xc6405 series (vr:1.8v) xc6405 series (vr:1.8v) xc6405 series (vr:2.5v) xc6405 series (vr:2.5v)  2  vr output voltage vs. input voltage  typical performance characteristics (continued) input voltage: v in1 (v) output voltage: v rout (v) v rout =0.9v input voltage: v in1 (v) output voltage: v rout (v) ta = 2 5 ? c in1 =1.0  f(ceramic), c l1 =4.7  f(ceramic) v rout =0.9v v rout =1.8v input voltage: v in1 (v) output voltage: v rout (v) ta = 2 5 ? c in1 =1.0  f ( ceramic ) , c l1 =1.0  f ( ceramic ) v rout =1.8v input voltage: v in1 (v) output voltage: v rout (v) v rout =2.5v input voltage: v in1 (v) output voltage: v rout (v) input voltage: v in1 (v) output voltage: v rout (v) v rout =2.5v ta = 2 5 ? c in1 =1.0  f ( ceramic ) , c l1 =1.0  f ( ceramic ) ta = 2 5 ? c in1 =1.0  f ( ceramic ) , c l1 =1.0  f ( ceramic ) ta = 2 5 ? c in1 =1.0  f(ceramic), c l1 =4.7  f(ceramic) ta = 2 5 ? c in1 =1.0  f ( ceramic ) , c l1 =1.0  f ( ceramic )
24/52 XCM524 series 4.85 4.90 4.95 5.00 5.05 5.10 5.25.35.45.55.65.75.85.96.0 input voltage vin (v) output voltage vrout ? v e 2.85 2.90 2.95 3.00 3.05 3.10 4.0 4.5 5.0 5.5 6.0 input voltage vin (v) output voltage vrout ?? v e 4.2 4.4 4.6 4.8 5.0 5.2 4.5 5.0 5.5 input voltage vin (v) output voltage vrout (v ) 2.2 2.4 2.6 2.8 3.0 3.2 2.5 3.0 3.5 input voltage vin (v) output voltage vrout (v ) topr =25 ? cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) topr =25 ? cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) iout=0ma 1ma 30ma 100ma iout=0ma 1ma 30ma 100ma topr =25 ? cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) topr=25 ? cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) iout=0ma 1ma 30ma 100ma iout=0ma 1ma 30ma 100ma xc6405 series (vr:3.0v) xc6405 series (vr:3.0v) xc6405 series (vr:5.0v) xc6405 series (vr:5.0v)  2  vr output voltage vs. input voltage (continued)  typical performance characteristics (continued) v rout =3.0v input voltage: v in1 (v) output voltage: v rout (v) ta = 2 5 ? c in1 =1.0  f ( ceramic ) , c l1 =1.0  f ( ceramic ) v rout =3.0v input voltage: v in1 (v) output voltage: v rout (v) v rout =5.0v input voltage: v in1 (v) output voltage: v rout (v) ta = 2 5 ? c in1 =1.0  f ( ceramic ) , c l1 =1.0  f ( ceramic ) ta = 2 5 ? c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =5.0v input voltage: v in1 (v) output voltage: v rout (v) ta = 2 5 ? c in1 =1.0  f ( ceramic ) , c l1 =1.0  f ( ceramic )
25/52 x cm524 series  3  dropout voltage vs. vr output current 0.6 0.8 1 1.2 1.4 1.6 0 50 100 150 200 vr output current irout (ma) dropout voltage vdif (v) 0 0.2 0.4 0.6 0.8 1 0 50 100 150 200 vr output current irout (ma) dropout voltage vdif (v) 0 0.2 0.4 0.6 0.8 1 0 50 100 150 200 vr output current irout (ma) dropout voltage vdif (v) 0 0.2 0.4 0.6 0.8 1 0 50 100 150 200 vr output current irout (ma) dropout voltage vdif ? v e 0 0.2 0.4 0.6 0.8 1 0 50 100 150 200 vr output current irout (ma) dropout voltage vdif (v) topr= 85 ? 25 ? - 40 ? cin=1.0  f (ceramic), cl=4.7  f (c eramic ) topr= 85 ? 25 ? - 40 ? cin=1.0  f (ceramic), cl=1.0  f (c eramic ) topr= 85 ? 25 ? - 40 ? cin=1.0  f (ceramic), cl=1.0  f (c eramic ) topr = 85 ? 25 ? - 40 ? cin=1.0  f (ceramic), cl=1.0  f (c eramic ) topr= 85 ? 25 ? - 40 ? cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) xc6405 series (vr:0.9v) xc6405 series (vr:1.8v) xc6405 series (vr:2.5v) xc6405 series (vr:3.0v) xc6405 series (vr:5.0v)  typical performance characteristics (continued) -40 ? c in1 =1.0  f(ceramic), c l1 =4.7  f(ceramic) v rout =0.9v output current: i rout (ma) dropout voltage: vdif (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =1.8v output current: i rout (ma) dropout voltage: vdif (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =2.5v output current: i rout (ma) dropout voltage: vdif (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =3.0v output current: i rout (ma) dropout voltage: vdif (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =5.0v output current: i rout (ma) dropout voltage: vdif (v)
26/52 XCM524 series  4  supply current vs. input voltage 0 20 40 60 80 100 120 0.0 1.0 2.0 3.0 4.0 5.0 6.0 input voltage vin (v) supply current iss ? a e 0 20 40 60 80 100 120 0.0 1.0 2.0 3.0 4.0 5.0 6.0 input voltage vin (v) supply current iss (  a) 0 20 40 60 80 100 120 0.0 1.0 2.0 3.0 4.0 5.0 6.0 input voltage vin (v) supply current iss (  a) 0 20 40 60 80 100 120 0.0 1.0 2.0 3.0 4.0 5.0 6.0 input voltage vin (v) supply current iss ? a e 0 20 40 60 80 100 120 0.0 1.0 2.0 3.0 4.0 5.0 6.0 input voltage vin (v) supply current iss ? a e topr= 85 ? 25 ? - 40 ? cin=1.0  f (ceramic), cl=4.7  f ( c er amic ) topr= 85 ? 25 ? - 40 ? cin=1.0  f (ceramic), cl=1.0  f (c eramic ) topr= 85 ? 25 ? - 40 ? cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) topr= 85 ? 25 ? - 40 ? cin=1.0  f (ceramic), cl=1.0  f (c eramic ) topr= 85 ? 25 ? - 40 ? cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) xc6405 series (vr:0.9) xc6403 series (vr:1.8v) xc6405 series (vr:2.5v) xc6405 series (vr:3.0v) xc6405 series (vr:5.0v)  typical performance characteristics (continued) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =2.5v input voltage: v in1 (v) ? ? ?v? iss (  a) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =1.8v input voltage: v in1 (v) supply current: i dd ( a) input voltage: v in1 (v) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =5.0v supply current: i dd ( a) c in1 =1.0  f(ceramic), c l1 =4.7  f(ceramic) v rout =0.9v input voltage: v in1 (v) supply current: i dd ( a) supply current: i dd ( a) c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) v rout =3.0v input voltage: v in1 (v) supply current: i dd ( a)
27/52 x cm524 series  5  vr output voltage vs. ambient temperature 0.60 0.70 0.80 0.90 1.00 1.10 -50-250 255075100 operating temperature topr ( ? ) output voltage vrout ? v e 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 -50-25 0 25 50 75100 output voltage vrout ? v e 2.80 2.85 2.90 2.95 3.00 3.05 3.10 3.15 3.20 -50 -25 0 25 50 75 100 output voltage vrout ? v e 2.30 2.35 2.40 2.45 2.50 2.55 2.60 2.65 2.70 -50 -25 0 25 50 75 100 output voltage vrout ? v e 1.60 1.65 1.70 1.75 1.80 1.85 1.90 1.95 2.00 -50 -25 0 25 50 75 100 operating temperature topr ( ? ) output voltage vrout ? v e vin=2.0v cin=1.0  f (ceramic), cl=4.7  f (c eramic ) iout=0ma =30ma =100ma vin=2.8v cin=1.0  f(ceramic), cl=1.0  f ( c er amic ) iout=0ma =30ma =100ma operating temperature topr ( ? ) vin=3.5v cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) iout=0ma =30ma =100ma operating temperature topr ( ? ) vin=4.0v cin=1.0  f (ceramic), cl=1.0  f (c eramic ) iout=0ma =30ma =100ma vin=6.0v cin=1.0  f (ceramic), cl=1.0  f ( c er amic ) iout=0ma =30ma =100ma operating temperature topr ( ? ) xc6405 series (vr:0.9) xc6403 series (vr:1.8v) xc6405 series (vr:2.5v) xc6405 series (vr:3.0v) xc6405 series (vr:5.0v)  typical performance characteristics (continued) v rout =0.9v output voltage: v rout (v) v in1 =2.0v c in1 =1.0  f(ceramic), c l1 =4.7  f(ceramic) a mbient temperature: ta () v rout =1.8v output voltage: v rout (v) v in1 =2.8v c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) a mbient temperature: ta () v rout =2.5v output voltage: v rout (v) v in1 =3.5v c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) a mbient temperature: ta () v rout =3.0v output voltage: v rout (v) v in1 =4.0v c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) a mbient temperature: ta () v rout =5.0v output voltage: v rout (v) v in1 =6.0v c in1 =1.0  f(ceramic), c l1 =1.0  f(ceramic) a mbient temperature: ta ()
28/52 XCM524 series  6  supply current vs. ambient temperature  typical performance characteristics (continued) v rout =0.9v su pp l y current: i dd ( () v rout =1.8v v rout =2.5v v rout =3.0v v rout =5.0v su pp l y current: i dd ( () supply current: i dd ( a) a mbient temperature: ta () supply current: i dd ( a) a mbient temperature: ta () supply current: i dd ( a) a mbient temperature: ta () v in1 =2.0v v in1 =2.8v v in1 =3.5v v in1 =4.0v v in1 =6.0v
29/52 x cm524 series  7  rdelay vs. ambient temperature  8  output noise density 4.90 5.00 5.10 5.20 5.30 5.40 -50-25 0 25 50 75100 detect voltage, release voltage vdf,vdr ? v e 3.50 3.55 3.60 3.65 3.70 3.75 3.80 -50 -25 0 25 50 75 100 detect voltage, release voltage vdf,vdr ? v e 2.60 2.65 2.70 2.75 2.80 2.85 2.90 -50 -25 0 25 50 75 100 detect voltage, release voltage vdf,vdr ? v e operating temperature topr ( o c) operating temperature topr ( ? ) operating temperature topr ( ? ) operating temperature topr ( ? ) 1.90 1.95 2.00 2.05 2.10 2.15 2.20 -50 -25 0 25 50 75 100 detect voltage, release voltage vdf,vdr (v) vdr vdf vdr vdf operating temperature topr ( ? ) vdr vdf vdr vdf xc6405 series (vd:2.0v) xc6405 series (vd:2.7v) xc6405 series (vd:5.0v) xc6405 series (vd:3.6v)  typical performance characteristics (continued) v df =2.0v detect voltage, release voltage: v df ,v dr (v) ambient temperature: ta () v df =2.7v detect voltage, release voltage: v df ,v dr (v) ambient temperature: ta () v df =3.6v detect voltage, release voltage: v df ,v dr (v) ambient temperature: ta () v df =5.0v detect voltage, release voltage: v df ,v dr (v) ambient temperature: ta () 0 100 200 300 400 500 600 700 800 -50 -25 0 25 50 75 100 ambient temperature: ta() rdelay (k) 0.01 0.1 1 10 0.1 1 10 100 frequency: (khz) output noise density (v/roothz) vin=4.0v iout=10ma cl=10uf(????? )  9  detect voltage, release voltage vs. ambient temperature v in1 =4.0v c in1 =1.0  f( d}vu^ ), c l1 =1.0  f(ceramic)
30/52 XCM524 series  10  vd n-channel driver transistor output current vs. vds 0 4 8 12 16 20 24 28 32 01234 vds (v) output current iout ? ma e 0 3 6 9 12 15 18 21 24 01234 vds (v) output current iout ? ma e 0 2 4 6 8 10 12 14 16 00.511.522.53 vds (v) output current iout ? ma e 0 1 2 3 4 5 6 7 8 00.511.522.5 vds (v) output current iout ? ma e topr =25 ? topr =25 ? topr =25 ? vin=2.0v vin=2.0v vin=2.5v vin=2.0v vin=1.5v vin=1.0v vin=2.5v vin=2.0v vin=1.5v vin=3.0v vin=1.5v vin=2.5v vin=3.5v vin=4.5v xc6405 series (vd:2.0v) xc6405 series (vd:2.7v) xc6405 series (vd:5.0v) xc6405 series (vd:3.6v)  typical performance characteristics (continued) v df =3.6v output current: i dout (ma) v ds (v) v df =5.0v output current: i dout (ma) v ds (v) v df =2.7v output current: i dout (ma) v ds (v) v df =2.0v output current: i dout (ma) v ds (v) ta = 2 5 ? ta = 2 5 ? ta = 2 5 ? ta = 2 5 ?
31/52 x cm524 series  11  vd n-channel driver transistor ou tput current vs. input voltage 0 5 10 15 20 25 0123456 input voltage vin (v) output current iout ? ma e 0 4 8 12 16 20 01234 input voltage vin (v) output current iout ? ma e 0 3 6 9 12 15 01234 input voltage vin (v) output voltage iout ?? ma e 0 2 4 6 8 00.511.522.5 input voltage vin (v) output current iout ? ma e vds=0.5v 25 ? -40 ? 85 ? 25 ? vds=0.5v -40 ? 85 ? vds=0.5v 25 ? -40 ? 85 ? vds=0.5v 25 ? -40 ? 85 ? xc6405 series (vd:2.0v) xc6405 series (vd:2.7v) xc6405 series (vd:5.0v) xc6405 series (vd:3.6v)  typical performance characteristics (continued) v df =3.6v v df =5.0v v df =2.7v v df =2.0v output current: i dout (ma) input voltage: v in1 (v) output current: i dout (ma) input voltage: v in1 (v) output current: i dout (ma) input voltage: v in1 (v) output current: i dout (ma) input voltage: v in1 (v)
32/52 XCM524 series ????????  12  input transient response  typical performance characteristics (continued) input voltage: v in1 (v) input voltage input voltage ?? ?y input voltage ?? ?y input voltage input voltage time ( 40  s /div ) time ( 40  s /div ) time ( 40  s /div ) time ( 40  s /div ) input voltage: v in1 (v) input voltage: v in1 (v) input voltage: v in1 (v) input voltage: v in1 (v) input voltage: v in1 (v) time ( 40  s/div ) time ( 40  s /div ) output voltage: v rout (v) output voltage: v rout (v) output voltage: v rout (v) output voltage: v rout (v) z? ?y vout(v) output voltage: v rout (v) output voltage: v rout (v) output voltage output voltage output voltage z? ?y output voltage output voltage ?? ?y input voltage output voltage i rout =1ma, tr=tf=5.0  s c l1 =4.7  f ( ceramic ) , ta=25 ? v rout =0.9v i rout =30ma, tr=tf=5.0  s c l1 =4.7  f ( ceramic ) , ta=25 ? v rout =0.9v i rout =100ma, tr=tf=5.0  s c l1 =4.7  f ( ceramic ) , ta=25 ? v rout =0.9v i rout =1ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =1.8v i rout =100ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =1.8v i rout =30ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =1.8v
33/52 x cm524 series  12  input transient response (continued) 0 1 2 3 4 5 6 time (40  sec/div) input voltage vin ? v e 2.96 2.98 3.00 3.02 3.04 3.06 3.08 output voltage vout ? v e 0 1 2 3 4 5 6 time (40  sec/div) input voltage vin ? v e 2.96 2.98 3.00 3.02 3.04 3.06 3.08 output voltage vout ? v e 0 1 2 3 4 5 6 time (40  sec/div) input voltage vin ? v e 2.96 2.98 3.00 3.02 3.04 3.06 3.08 output voltage vout ? v e 0 1 2 3 4 5 6 time (40  sec/div) input voltage vin ? v e 2.46 2.48 2.50 2.52 2.54 2.56 2.58 output voltage vout ? v e 0 1 2 3 4 5 6 time ( 40 sec/div) input voltage vin ( v ) 2.46 2.48 2.50 2.52 2.54 2.56 2.58 output voltage vout ( v ) 0 1 2 3 4 5 6 time (40sec/div) input voltage vin (v ) 2.46 2.48 2.50 2.52 2.54 2.56 2.58 output voltage vout (v) iout=1ma, tr=tf=5.0  sec, cl=1.0  f (ceramic), topr=25 ? input voltage output voltage iout=30ma, tr=tf=5.0  sec, cl=1.0  f (ceramic), topr=25 ? input voltage output voltage iout=100ma, tr=tf=5.0  sec, cl=1.0  f (ceramic), topr=25 ? input voltage output voltage iout=1ma , tr =tf =5.0  sec, cl=1.0  f (ceramic), topr=25 ? input voltage output voltage iout=30ma, tr=tf=5.0  sec, cl=1.0  f (ceramic), topr=25 ? input voltage output voltage iout=100ma, tr=tf=5.0  sec, cl=1.0  f (ceramic), topr=25 ? input voltage output voltage xc6405 series (vr:2.5v) xc6405 series (vr:2.5v) xc6405 series (vr:3.0v) xc6405 series (vr:2.5v) xc6405 series (vr:3.0v) xc6405 series (vr:3.0v)  typical performance char a cteristics (continued) ?? ?y z? ?y vout(v) z? ?y vout(v)  (40  sec/div) time ( 40  s /div ) input voltage: v in1 (v) output voltage: v rout (v) input voltage output voltage i rout =1ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =2.5v time ( 40  s /div ) input voltage: v in1 (v) output voltage: v rout (v) input voltage output voltage i rout =30ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =2.5v time ( 40  s /div ) input voltage: v in1 (v) output voltage: v rout (v) in p ut volta g e output voltage i rout =100ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =2.5v time ( 40  s /div ) input voltage: v in1 (v) output voltage: v rout (v) in p ut volta g e output voltage i rout =1ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =3.0v time ( 40  s /div ) input voltage: v in1 (v) output voltage: v rout (v) input voltage output voltage i rout =100ma, tr=tf=5.0  s c l1 =1.0  f(ceramic), ta=25 ? v rout =3.0v i rout =30ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =3.0v time ( 40  s /div ) input voltage: v in1 (v) output voltage: v rout (v) input voltage output voltage
34/52 XCM524 series  12  input transient response (continued) 2 3 4 5 6 7 8 time (40  sec/div) input voltage vin (v) 4.96 4.98 5.00 5.02 5.04 5.06 5.08 output voltage vout ? v e 2 3 4 5 6 7 8 time (40  sec/div) input voltage vin ? v e 4.96 4.98 5.00 5.02 5.04 5.06 5.08 output voltage vout ? v e 2 3 4 5 6 7 8 time (40  sec/div) input voltage vin ? v e 4.96 4.98 5.00 5.02 5.04 5.06 5.08 output voltage vout ? v e iout=1ma, tr=tf=5.0  sec, cl=1.0  f (c eramic ), topr=25 ? input v oltage output voltage iout=30ma, tr=tf=5.0  sec, cl=1.0  f (c eramic ), topr=25 ? input voltage output voltage iout=100ma, tr=tf=5.0  sec, cl=1.0  f (ceramic), topr=25 ? input voltage output voltage xc6405 series (vr:5.0v) xc6405 series (vr:5.0v) xc6405 series (vr:5.0v)  typical performance characteristics (continued) ?? ?y vin(v) z? ?y vout(v) z? ?y vout(v) z? ?y vout(v)  (40  sec/div)  (40  sec/div) time ( 40  s /div ) input voltage: v in1 (v) output voltage: v rout (v) input voltage output voltage i rout =1ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =5.0v time ( 40  s /div ) input voltage: v in1 (v) output voltage: v rout (v) input voltage output voltage i rout =30ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =5.0v time ( 40  s/div ) input voltage: v in1 (v) output voltage: v rout (v) input voltage output voltage i rout =100ma, tr=tf=5.0  s c l1 =1.0  f ( ceramic ) , ta=25 ? v rout =5.0v
35/52 x cm524 series  13  load transient response  typical performance characteristics (continued) output current: i rout (ma) ?? ?y vin(v) time ( 20  s /div ) output voltage ?? ?y vin(v)  (20  sec/div)  ( 40  sec/div ) output voltage: v rout (v) z? ?y? v out (v) ?? ?y output current v in1 =2.0v, tr=tf=5.0  s, ta=25 ? c in1 =1.0  f(ceramic), c l1 =4.7  f(ceramic) v rout =0.9v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =2.0v, tr=tf=5.0  s, ta=25 ? c in1 =1.0  f(ceramic), c l1 =4.7  f(ceramic) v rout =0.9v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =2.0v, tr=tf=5.0  sec, ta=25 ? c in1 =1.0  f(ceramic), c l1 =4.7  f(ceramic) v rout =0.9v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =2.8v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =1.8v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =2.8v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =1.8v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =2.8v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =1.8v
36/52 XCM524 series  13  load transient response (continued) 2.30 2.35 2.40 2.45 2.50 2.55 time ( 20  sec/div) output voltage vout ? v e 0 50 100 150 200 250 output current iout ? ma e 2.30 2.35 2.40 2.45 2.50 2.55 time ( 20  sec/div) output voltage vout ? v e 0 50 100 150 200 250 output current iout ? ma e 2.80 2.85 2.90 2.95 3.00 3.05 time ( 20  sec/div) output voltage vout ? v e 0 50 100 150 200 250 output current iout ? ma e 2.80 2.85 2.90 2.95 3.00 3.05 time (20  sec/div) output voltage vout ? v e 0 50 100 150 200 250 output current iout ? ma e 2.80 2.85 2.90 2.95 3.00 3.05 time (20sec/div) output voltage vout (v) 0 50 100 150 200 250 output current iout (ma) 2.30 2.35 2.40 2.45 2.50 2.55 time (20sec/div) output voltage vout (v) 0 50 100 150 200 250 output current iout (ma) vin=2.5v, tr=tf=5.0  sec cin=cl=1.0  f (ceramic), topr=25 ? output current output voltage vin=2.5v, tr=tf=5.0  sec cin=cl=1.0  f (ceramic), topr=25 ? output current output voltage vin=2.5v, tr=tf=5.0  sec cin=cl=1.0  f (ceramic), topr=25 ? output current output voltage vin=4.0v, tr=tf=5.0  sec cin=cl=1.0  f (ceramic), topr=25 ? output current output voltage vin=4.0v, tr=tf=5.0  sec cin=cl=1.0  f (ceramic), topr=25 ? output current output voltage vin=4.0v, tr=tf=5.0  sec cin=cl=1.0  f (ceramic), topr=25 ? output current output voltage xc6405 series (vr:2.5v) xc6405 series (vr:2.5v) xc6405 series (vr:3.0v) xc6405 series (vr:2.5v) xc6405 series (vr:3.0v) xc6405 series (vr:3.0v)  typical performance characteristics (continued) output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =3.5v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =2.5v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =3.5v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =2.5v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =3.5v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =2.5v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =4.0v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =3.0v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =4.0v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =3.0v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =4.0v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =3.0v
37/52 x cm524 series  13  load transient response (continued)  typical performance characteristics (continued) output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =6.0v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =5.0v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =6.0v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =5.0v output current: i rout (ma) time ( 20  s /div ) output voltage output voltage: v rout (v) output current v in1 =6.0v, tr=tf=5.0  s c in1 =c l1 =1.0  f(ceramic), ta=25 ? v rout =5.0v
38/52 XCM524 series  14  ripple rejection rate  typical performance characteristics (continued) ??? * t
:? f (khz) v rout =0.9v ??? * t
:? f (khz) v rout =1.8v ??? * t
:? f (khz) v rout =3.0v ??? * t
:? f (khz) v rout =2.5v ??? * t
:? f (khz) v rout =5.0v 0 10 20 30 40 50 60 70 80 90 0.01 0.1 1 10 100 ??? f (khz) ??? rr ( vin=2.5v dc+0.5vp-pac iout=50ma cl=4.7f????? 0 10 20 30 40 50 60 70 80 90 0.01 0.1 1 10 100 ??? f (khz) ??? rr ( vin=2.8v dc+0.5vp-pac iout=50ma cl=1.0f????? 0 10 20 30 40 50 60 70 80 90 0.01 0.1 1 10 100 ??? f (khz) ??? rr ( vin=3.5v dc+0.5vp-pac iout=50ma cl=1.0f????? 0 10 20 30 40 50 60 70 80 90 0.01 0.1 1 10 100 ??? f (khz) ??? rr ( vin=4.0v dc+0.5vp-pac iout=50ma cl=1.0f????? 0 10 20 30 40 50 60 70 80 90 0.01 0.1 1 10 100 ??? f (khz) ??? rr ( vin=5.75v dc+0.5vp-pac iout=50ma cl=1.0f????? ripple rejection ratio: rr (db) v in1 =2.25vdc+0.5vp-pac i rout =50ma, c l1 =1.0  f(ceramic) ripple rejection ratio: rr (db) v in1 =2.8vdc+1.0vp-pac i rout =50ma, c l1 =1.0  f(ceramic) v in1 =3.5vdc+1.0vp-pac i rout =50ma, c l1 =1.0  f(ceramic) v in1 =4.0vdc+1.0vp-pac i rout =50ma, c l1 =1.0  f(ceramic) ripple rejection ratio: rr (db) ripple rejection ratio: rr (db) ripple rejection ratio: rr (db) v in1 =5.75vdc+0.5vp-pac i rout =50ma, c l1 =1.0  f(ceramic) ri pp le fre q uenc y : f ( khz ) ri pp le fre q uenc y : f ( khz ) ri pp le fre q uenc y : f ( khz ) ri pp le fre q uenc y : f ( khz ) ri pp le fre q uenc y : f ( khz )
39/52 x cm524 series -6 -4 -2 0 2 4 0 1 2 3 4 5 -6 -4 -2 0 2 4 0 1 2 3 4 5 -6 -4 -2 0 2 4 0 1 2 3 4 5 -6 -4 -2 0 2 4 0 1 2 3 4 5 -6 -4 -2 0 2 4 0 1 2 3 4 5 -6 -4 -2 0 2 4 0 1 2 3 4 5  15  input voltage rising response time  typical performance characteristics (continued) time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =1ma, tr= 5.0  s v in1 =0  2.0v, c l1 =4.7  f ( ceramic ) v rout =0.9v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =30ma, tr= 5.0  s v in1 =0  2.0v, c l1 =4.7  f ( ceramic ) v rout =0.9v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =100ma, tr= 5.0  s v in1 =0  2.0v, c l1 =4.7  f ( ceramic ) v rout =0.9v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =1ma, tr= 5.0  s v in1 =0  2.8v, c l1 =1.0  f ( ceramic ) v rout =1.8v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =100ma, tr= 5.0  s v in1 =0  2.8v, c l1 =1.0  f ( ceramic ) v rout =1.8v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =30ma, tr= 5.0  s v in1 =0  2.8v, c l1 =1.0  f ( ceramic ) v rout =1.8v
40/52 XCM524 series  15  input voltage rising response time (continued) -5 -3 -1 1 3 5 time (20  sec/div) input voltage vin (v) 0 1 2 3 4 5 output voltage vout ? v e -5 -3 -1 1 3 5 time (20  sec/div) input voltage vin (v) 0 1 2 3 4 5 output voltage vout ? v e -5 -3 -1 1 3 5 time ( 20  sec/div) input voltage vin (v) 0 1 2 3 4 5 output voltage vout ? v e -5 -3 -1 1 3 5 time (20  sec/div) input voltage vin ? v e 0 1 2 3 4 5 output voltage vout ? v e -5 -3 -1 1 3 5 time ( 20  sec/div) input voltage vin ? v e 0 1 2 3 4 5 output voltage vout ? v e -5 -3 -1 1 3 5 time (20  sec/div) input voltage vin (v) 0 1 2 3 4 5 output voltage vout ? v e iout=1ma, tr=5.0  sec vin=0  3.5v, cl=4.7  f (ceramic) output voltage input voltage iout=30ma, tr=5.0  sec vin=0  3.5v, cl=4.7  f (ceramic) output voltage input v oltage iout=100ma, tr=5.0  sec vin=0  3.5v, cl=4.7  f (c eramic ) output voltage input voltage iout=1ma, tr=5.0  sec vin=0  4.0v, cl=1.0  f ( c er amic ) output voltage input v oltage iout=30ma, tr=5.0  sec vin=0  4.0v, cl=1.0  f (ceramic) output voltage input voltage iout=100ma, tr=5.0  sec vin=0  4.0v, cl=1.0  f (ceramic) output voltage input voltage xc6405 series (vr:2.5v) xc6405 series (vr:2.5v) xc6405 series (vr:3.0v) xc6405 series (vr:2.5v) xc6405 series (vr:3.0v) xc6405 series (vr:3.0v)  typical performance characteristics (continued) time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =1ma, tr= 5.0  s v in1 =0  3.5v, c l1 =1.0  f ( ceramic ) v rout =2.5v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =30ma, tr= 5.0  s v in1 =0  3.5v, c l1 =1.0  f ( ceramic ) v rout =2.5v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =100ma, tr= 5.0  s v in1 =0  3.5v, c l1 =1.0  f ( ceramic ) v rout =2.5v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =1ma, tr= 5.0  s v in1 =0  4.0v, c l1 =1.0  f ( ceramic ) v rout =3.0v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =100ma, tr= 5.0  s v in1 =0  4.0v, c l1 =1.0  f ( ceramic ) v rout =3.0v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =30ma, tr= 5.0  s v in1 =0  4.0v, c l1 =1.0  f ( ceramic ) v rout =3.0v
41/52 x cm524 series  15  input voltage rising response time (continued) -3 -1 1 3 5 7 time (20  sec/div) input voltage vin ? v e 0 2 4 6 8 10 output voltage vout ? v e -3 -1 1 3 5 7 time (20  sec/div) input voltage vin ? v e 0 2 4 6 8 10 output voltage vout ? v e -3 -1 1 3 5 7 time ( 20  sec/div) input voltage vin ? v e 0 2 4 6 8 10 output voltage vout ? v e iout=1ma, tr=5.0  sec vin=0  6.0v, cl=1.0  f ( c er amic ) output voltage input voltage iout=30ma, tr=5.0  sec vin=0  6.0v, cl=1.0  f ( c er amic ) output voltage input voltage iout=100ma, tr=5.0  sec vin=0  6.0v, cl=1.0  f ( c er amic ) output voltage input voltage xc6405 series (vr:5.0v) xc6405 series (vr:5.0v) xc6405 series (vr:5.0v)  typic a l performance characteristics (continued) time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =1ma, tr= 5.0  s v in1 =0  6.0v, c l1 =1.0  f ( ceramic ) v rout =5.0v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage v rout =5.0v time ( 20  s/div ) input voltage: v in1 (v) output voltage: v rout (v) in p it volta g e output voltage i rout =100ma, tr= 5.0  s v in1 =0  6.0v, c l1 =1.0  f ( ceramic ) v rout =5.0v i rout =30ma, tr= 5.0  s v in1 =0  6.0v, c l1 =1.0  f ( ceramic )
42/52 XCM524 series  typical performance characteristics (continued) ? 2ch:dc/dc convertor block (1) efficiency vs. output current ???? (2) output voltage vs. output current (3) ripple voltage vs. output current v dcout =1.8v, f osc =1.2mhz 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 output current: i out 2 (ma) efficency:effi (% ) pwm/pfm a ut omatic sw itc hing cont r ol pwm control v in2 = 4.2v 3.6v v in2 = 4.2v 3.6v l=4.7 h( nr4018) c in 2 =4.7 f c l2 =10 f v dcout =1.8v, f osc =3.0mhz 0 10 20 30 40 50 60 70 80 90 100 0.1 1 10 100 1000 output current: i out 2 (ma) efficency: effi (% ) pwm/ pfm a utomatic sw it c hing contr ol pwm control v in2 = 4.2v 3.6v v in2 = 4.2v 3.6v l=1.5 h( nr3015) c in 2 =4.7 f c l2 =10 f v dcout =1.8v, f osc =1.2mhz 1.5 1.6 1.7 1.8 1.9 2.0 2.1 0.1 1 10 100 1000 output current: i out 2 (ma) output voltage: v dcout (v) pwm/pfm a utomat ic sw itc hing cont r ol v in2 4.2v,3.6v pwm control l=4.7 h( nr4018) c in 2 =4.7 f c l2 =10 f v dcout =1.8v, f osc =3.0mhz 1.5 1.6 1.7 1.8 1.9 2.0 2.1 0.1 1 10 100 1000 output current: i out 2 (ma) output voltage: v dcout (v) pwm/ pfm a ut omatic sw it c hing contr ol v in2 4.2v,3.6v pwm control l= 1.5 h(nr3015) c in 2 =4.7 f c l2 =10 f v dcout =1.8v, f osc =3.0mhz 0 20 40 60 80 100 0.1 1 10 100 1000 output current: i out 2 (ma) ripple voltage: vr (mv) pwm/ pfm a utomat ic sw itching control v in2 4.2v 3.6v pwm control v in2 4.2v,3.6v l= 1.5 h(nr3015) c in 2 =4.7 f c l2 =10 f v dcout =1.8v, f osc =1.2mhz 0 20 40 60 80 100 0.1 1 10 100 1000 output current: i out 2 (ma) ripple voltage: vr (mv) pwm control v in2 4.2v,3.6v pwm/pfm a ut omatic sw itching control v in2 4.2v 3.6v l=4.7 h( nr4018) c in 2 =4.7 f c l2 =10 f
43/52 x cm524 series  typical performance characteristics (continued) (4) oscillation frequency vs. ambient temperature (5) supply current vs. ambient temperature (6) output voltage vs. ambient temperature ???????????????? (7) uvlo voltage vs. ambient temperature v dcout =1.8v, f osc =1.2mhz 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) v in2 =3.6v oscillation fr equency: f osc (mhz) l=4.7 h( nr4018) c in 2 =4.7 f c l2 =10 f v dcout =1.8v, f osc =3.0mhz 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) v in2 =3.6v oscillation fr equency: f os c (mhz) l= 1.5 h(nr3015) c in 2 =4.7 f c l2 =10 f v dcout =1.8v, f osc =1.2mhz 0 5 10 15 20 25 30 35 40 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) supply current: i dd ( a) v in2 =6.0v v in2 =4.0v v dcout =1.8v, f osc =3.0mhz 0 5 10 15 20 25 30 35 40 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) supply current: i dd ( a) v in2 =6.0v v in2 =4.0v v dcout =1.8v, f osc =3.0mhz 1.5 1.6 1.7 1.8 1.9 2.0 2.1 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) output voltage: v dcout (v) v in2 =3.6v v dcout =1.8v, f osc =3.0mhz 0.0 0.3 0.6 0.9 1.2 1.5 1.8 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) uvlo voltage: uvlo (v) en2 =v in2
44/52 XCM524 series  typical performance characteristics (continued) (8) en "h" voltage vs. ambient temperature ????????? ? (9) en" l" voltage vs. ambient temperature (10) soft start time vs. ambient temperature (11) "p-channel/n-channel" driver on resistance vs. input voltage v dcout =1.8v, f osc =3.0mhz 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) en "h" voltage: v enh (v) v in2 =5.0v v in2 =3.6v v dcout =1.8v, f osc =3.0mhz 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) en "l" voltage: v enl (v) v in2 =5.0v v in2 =3.6v v dcout =1.8v, f osc =1.2mhz 0 1 2 3 4 5 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) soft start time: t ss (ms) v in2 =3.6v l= 4.7 h(nr4018) c in 2 =4.7 f c l2 =10 f v dcout =1.8v, f osc =3.0mhz 0 1 2 3 4 5 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) soft start time: t ss (ms) v in2 =3.6v l= 1.5 h(nr3015) c in 2 =4.7 f c l2 =10 f v dcout =1.8v, f osc =3.0mhz 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0123456 input voltage: v in2 (v) pch on resistance nch on resistance lx sw on resistance: r lxh ,r lxl ( ? )
45/52 x cm524 series  typical performance characteristics (continued) (12) XCM524xc/ XCM524xd series rise wave form (13) XCM524xc/ XCM524xd series soft-start time vs. ambient temperature (14) XCM524xc/ XCM524xd series cl discharge resistance vs. ambient temperature v dcout =3.3v, f osc =3.0mhz 100 200 300 400 500 600 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) cl discharge resistance: rdischg( ? ) vin2=6.0v vin2=4.0v v dcout =1.2v, f osc =1.2mhz 0 100 200 300 400 500 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) soft start time: t ss ( s) v in2 =5.0v i out 2 =1.0ma l=4.7 h( nr4018) c in 2 =4.7 f c l2 =10 f v dcout =3.3v, f osc =3.0mhz 0 100 200 300 400 500 -50 -25 0 25 50 75 100 ambient temperature: ta ( ) soft start time: t ss ( s) v in2 =5.0v i out 2 =1.0ma l=1.5 h( nr3015) c in 2 =4.7 f c l2 =10 f 100 s/div v dcout =1.2v, f osc =1.2mhz l=4.7 en2:0.0v e 1.0v v dcout :0.5v/div v in2 =5.0v i out2 =1.0ma v dcout =3.3v, f osc =3.0mhz l=1.5 100 s/div en2:0.0v e 1.0v v dcout :1.0v/div v in2 =5.0v i out2 =1.0ma
46/52 XCM524 series  typical performance characteristics (continued) (15) load transient response v dcout =1.2v, f osc =1.2mhz(pwm/pfm automati c switching control) l=4.7  h(nr4018), c in2 =4.7  f(ceramic), c l2 =10  f(ceramic), ta=25 ? v in2 =3.6v, en2=v in2 i out2 =1ma  100ma 1ch : i out2 2ch: v dcout (50mv/div) 50 s/div i out2 =1ma  300ma 1ch : i out2 2ch: v dcout (50mv/div) 50 s/div i out2 =100ma  1ma 1ch : i out2 2ch: v dcout (50mv/div) 200 s/div i out2 =300ma  1ma 1ch : i out2 2ch: v dcout (50mv/div) 200 s/div
47/52 x cm524 series  typical performance characteristics (continued) (15) load transient response (continued) v dcout =1.2v, f osc =1.2mhz (pwm control) l=4.7  h(nr4018), c in2 =4.7  f(ceramic), c l2 =10  f(ceramic), ta=25 ? v in2 =3.6v, en2=v in2 i out2 =1ma  100ma 1ch : i out2 2ch: v dcout (50mv/div) 50 s/div i out2 =1ma  300ma 1ch : i out2 2ch: v dcout (50mv/div) 50 s/div i out2 =100ma  1ma 1ch : i out2 2ch: v dcout (50mv/div) 200 s/div i out2 =300ma  1ma 1ch : i out2 2ch: v dcout (50mv/div) 200 s/div
48/52 XCM524 series  typical performance characteristics (continued) (15) load transient response (continued) v dcout =1.8v, f osc =3.0mhz (pwm/pfm automa tic switching control) l=1.5  h(nr3015), c in2 =4.7  f(ceramic), c l2 =10  f(ceramic),ta=25 ? v in2 =3.6v, en=v in2 i out2 =1ma  100ma 1ch : i out2 2ch: v dcout (50mv/div) 50 s/div i out2 =1ma  300ma 1ch : i out2 2ch: v dcout (50mv/div) 50 s/div i out2 =100ma  1ma 1ch : i out2 2ch: v dcout (50mv/div) 200 s/div i out2 =300ma  1ma 1ch : i out2 2ch: v dcout (50mv/div) 200 s/div
49/52 x cm524 series  typical performance characteristics (continued) (15) load transient response (continued) v dcout =1.8v, f osc =3.0mhz (pwm control) l=1.5  h(nr3015), c in2 =4.7  f(ceramic), c l2 =10  f(ceramic), ta=25 ? v in2 =3.6v, en2=v in2 i out2 =100ma  1ma 1ch : i out2 2ch: v dcout (50mv/div) 200 s/div i out2 =300ma  1ma 1ch : i out2 2ch: v dcout (50mv/div) 200 s/div i out2 =1ma  300ma 1ch : i out2 2ch: v dcout (50mv/div) 50 s/div i out2 =1ma  100ma 1ch : i out2 2ch: v dcout (50mv/div) 50 s/div
50/52 XCM524 series ? usp-12b01 ? usp-12b01 reference pattern layout ?????????????? ? usp-12b01 reference metal mask design  packaging information 0.25 0.25 0.65 0.65 0.90 1.35 0.90 1.35 0.45 0.45 1.30 1.60 0.10 0.10 1.30 1.60 0.30 0 .025 0.025 0.25 0 .025 0.025 0.55 0.95 0.25 0.15 0.65 1.05 0.20 0.20 0.50 0.60 1.10 1.55 0.60 1.10 1.55 0.55 0.95 1.30 0.55 0.95 1.30 0.25 0.25 0.35 0.35 0.20 0.05 0.05 0.15 0.05 0.05 0.55 0.95 0.25 0.15 0.65 1.05 0.15 0.15 0.40 0.250.1 1.30.1 0.250.1 1.20.1 1.20.1 0.70.05 0.70.05 0.40.1 123456 7 8 9 12 11 10 2.30.08 2.80.08 max0.6 (0.4) (0.4) (0.4) (0.4) (0.4) (0.15) (0.25) 0.25 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2 0.05
51/52 x cm524 series  packaging information (continued) ? ? usp-12b01 power dissipation power dissipation data for the usp-12b01 is shown in this page. the value of power dissipation varies with the mount board conditions. please use this data as one of referenc e data taken in the described condition. 1. measurement condit ion (reference data) condition: mount on a board ambient: natural convection soldering: lead (pb) free board: dimensions 40 x 40 mm (1600 mm 2 in one side) 1 st layer: land and a wiring pattern 2 nd layer: connecting to approximate 50% of the 1 st heat sink 3 rd layer: connecting to approximate 50% of the 2 nd heat sink 4 th layer: noting material: glass epoxy (fr-4) thickness: 1.6 mm through-hole: 2 x 0.8 diameter (each tab needs one through-hole) 2. power dissipation vs. ambient temperature ? only 1ch heating, board mount (tj max = 125 ? ) ? both 2ch heating same time, board mount (tj max = 125 ? ) ambient temperature power dissipation pd mw thermal resistance ( /w) 25 800 85 320 125.00 ambient temperature power dissipation pd mw thermal resistance ( /w) 25 600 85 240 166.67 evaluation board (unit: mm) pd-ta? 0 200 400 600 800 1000 25 45 65 85 105 125 ??ta S?p?pdmw pd vs. ta ambient temperature: ta ( ? ) power dissipation: pd (mw) pd-ta 0 200 400 600 800 1000 25 45 65 85 105 125 ?? ta S?p?pdmw pd vs. ta ambient temperature: ta ( ? ) power dissipation: pd (mw)
52/52 XCM524 series 1. the products and product specifications cont ained herein are subject to change without notice to improve performance characteristic s. consult us, or our representatives before use, to confirm that the informat ion in this datasheet is up to date. 2. we assume no responsibility for any infri ngement of patents, pat ent rights, or other rights arising from the use of any information and circuitry in this datasheet. 3. please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet. 4. the products in this datasheet are not devel oped, designed, or approved for use with such equipment whose failure of malfuncti on can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. (e.g. atomic energy; aerospace; transpor t; combustion and associated safety equipment thereof.) 5. please use the products listed in this datasheet within the specified ranges. should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. 6. we assume no responsibility for damage or loss due to abnormal use. 7. all rights reserved. no part of this dat asheet may be copied or reproduced without the prior permission of torex semiconductor ltd.


▲Up To Search▲   

 
Price & Availability of XCM524

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X